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Grid-Free Electromagnetic Particle Simulations
Andrew J. Christlieb

Department of Mathematics
Michigan State University

Abstract Basic plasma science plays an increasingly significant rolein applications of impor-
tance to the United States Air Force. Many of these applications require a fully kinetic description
in at least part of the domain. The most common approach is to use a fully Lagrangian framework,
where the model is reduced to tracking the evolution of test particles in phase space. Of the many
varieties, the most accepted approach is Particle-In-Cell[1]. The PI, with his collaborators, is de-
veloping an alternative approach, the Boundary Integral Treecode (BIT) [2]. BIT is based on fast
summation algorithms and boasts arbitrary accuracy. In a range of numerical experiments, the all
scale resolution of BIT has proven to provide a substantial improvement over PIC [2]. A major
objective in this currant work is to develop a grid-free electromagnetic formulation of BIT.

Summary Over the past four years, while developing our methodology for a grid-free electro-
magnetic formulation of BIT, several significant topics, which need to be addressed, have become
central in our research efforts. These include the: 1) Extended our 1D analysis of the impact of ker-
nel regularization on the accuracy of the solution in the vicinity of boundaries to 3D (in preparation
[8]- Dr. Christlieb, Dr. Cartwright and Dr. Ong), 2) worked on development of Boundary Integral
Corrected PIC (in preparation - Dr. Christlieb, Dr. Cartwright and Dr. Ong), 3) a multi-scale ap-
proach to time stepping of coupled stiff systems based on ourhigh order semi-implicit integrators
[3,4,5], 4) applied our parallel time integrator [6,7] to problems that to time stepping of one million
particles using 3D BIT to compute fields and demonstrated that even with the problem does not fit
in cash we still get 4th order in wall clock time of forward Euler (in preparation - Dr. Christlieb,
Dr. MacDonald and Dr. Ong), 5) development of arbitrary order asymptotic preserving methods
for multi-scale problems (under development - Dr. Christlieb), 6) development of arbitrary order
adaptive methods based on explicit and semi-implicit integral differed correction (work complete -
in preparation - Dr. Christlieb, Dr. MacDonald, Dr. Ong), 7)a study of the impact of regularization
on solutions to the Schrodinger equation - (in preparation -Dr. Christlieb, Dr. Krasny and Dr. Ong),
8) translation and adaptation of a 3D c++ BIT code to parallelCUDA for GPU architecture (under
development - Dr. Christlieb, Dr. Johnston and Dr. Ong), 9) development of implicit time step-
ping methods based for Maxwell’s equations using the BIT metrology (currently modifying 3D
BIT code to handle 3D Maxwell kernel - Dr. Christlieb, Mr. VanGroningen and Dr. Ong), 10)
extension of BIT to radiative transport problems ([9]/method under development - Dr. Christlieb,
Dr. Hitchon, Dr. Lawler and Dr. Lister) 11) extension to 2D ofan adaptive mesh refinement frame-
work based on WENO (Dr. Christlieb, Dr. Qiu and Dr. Shen - Goalis AMR VP solver based on
WENO) [10]. All of these topics are linked by a desire to bridge the multiple spatial and temporal
scales which arise in plasma problems. We now give a brief summer of the progress on our time
stepping methods, analysis of BIT, extension of BIT to Maxwell’s equations and our high order
WENO AMR framework. At the end of this document, I have attached our relevant publications.
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Integral Deferred Correction Methods The Integral Deferred Correction (IDC) framework
[3,4] being developed by the PI and his collaborators, has been shown as one possible way to
systematically generate high order RK methods based on a loworder RK method. IDC belongs
to the family of integrators known as defect correction algorithms. Given a system of the form
dy
dt = f (t,y) with y(t0) = y0, IDC works as follows: letν0

i be an approximation toy(t) given by a
pth order RK method on the time stepst0, . . . , tm; let ν(t) be a polynomial of degree at mostmpass-
ing thought theν0

i ; define the error ase(t) = y(t)−ν(t) and the residual asr(t) = dν(t)
dt − f (t,ν(t));

let Q(t) = e(t)+
∫ t
t0

r(τ)dτ; taking the derivative of the equation fore(t) and re-writhing the equa-
tion in terms ofQ(t), we arrive at the differential form of our IDC corrector equation,

dQ
dt

= f

(

t,Q+ν0+
∫ t

t0
f (τ,ν(τ))dτ

)

− f (t,ν(t)) .

The corrector equation is solved to correctν0
i differs from other defect correction methods in that

the residual does note appear in differential form, rather the integral of the residual is built into the
dQ
dt equation. This inherently makes the method more robust thanstandard defect correction.dQ

dt
is solved with the same pth order RK method and used to computeν1

i ← ν0
i +Qi−

∫ ti
t0

r(τ)dτ. The
PI, along with his current and former post docs Dr. Ong and Dr.Qiu, have show that under cretin
assumptions,r − 1 successive approximations of the corrector equation solved with a pth order
explicit RK method, results in ar × pth order method, up to a maximum orderL, which is only
determined by the accuracy in the approximation of the integral residual,

∫ ti
t0 r(τ)dτ. In practice,

we have used a pth order implicit and semi-implicit RK in the predictor and corrector and observed
the same result. Dr. Morton, together with the PI, Dr. Ong andDr. Qiu, has extended the theoret-
ical results in [3,4] to both implicit and semi-implicit RK methods. The PI is currently working
on extending these ideas to class of semi-implicit RK methods know as Asymptoticly Preserving
(AP) methods. AP methods are a systematic philosophy for time stepping of systems with stiff
relaxation. Given a system with a small parameter, say the Knudson number in the collisional
Boltzmann equation, AP methods are a two step proceeder for developing numerical methods that
give uniform convergence to the limiting system as the smallparameter goes to zero, regardless of
the time step. Step one involves either mathematical modeling or a clever re-casting of the system
in form where taking the limit as the small parameter goes to zero yields the ‘correct’ limiting
behavior. For the Boltzmann equation of neutral gas dynamics, this involves scaling the system
so that the diffusion limit is obtained as Knudson number goes to zero. Step two involves the
development of a consistent Semi-Implicit Runge-Kutta (SIRK) schema designed to give uniform
convergence as the small parameter goes to zero. Then implicit part of the SIRK method handles
the stiff term, in this example the collision term, implicitly and the non stiff term, here transport,
explicitly. The PI has show that the IDC framework can support the type of SIRK that shows up in
an AP formulation. It remains to be shown that the new method that results from embedding the
AP SIRK in an IDC framework will again be an AP method. We are inthe processes of applying
the IDC AP SIRK to a range of test problems to provide numerical evidence that the resulting
method is indeed AP, we will then focus on rigorously showingthis to be the case.

We have also focused on extending our method to a parallel time integrator. IDC differs from
traditional defect correction in that the integral from of the residual is used in the formulation of

2



A.J. Christlieb Final Report on AFOSR Grant Number FA9550-07-01-0092 Mathematics

the solution, instead of the differential form of the residual. On multi-core architectures, defect
correction methods become extremely attractive because each correction step can be decoupled
from the prediction and prior correction steps. In so doing,the methods are able to achieve high
order accuracy in the wall clock time equivalent to that of the prediction step, provided multiple
cores are used for the computation. We refer to this new classof defect correction as Revisionist
IDC (RIDC), which allow for the corrections to be computed inparallel.The parallel integrator
we have developed is the first integrator to leverage multi-core cpus such that the method
achievespth order in the wall clock time equal to that of a single forward Euler step.

BIT Corrected PIC The use of time depended Green’s functions in a fully Lagrangian frame-
work raises the issue of needing to track a time history for each test particle. One proposed ap-
proach to controlling the need for a time history is to make use of fixed course mesh. As a first
step towards the electromagnetic case, we are exploring theuse of a coarse fixed mesh for domain
decomposition in electrostatic problems, where BIT is usedas a sub-cell method within each PIC
cell. The methods presented here differ from Particle-Particle-Particle-Mesh (P3M) in that local
boundary integrals are used within each cell to provide an accurate description of the local fields
within a mesh cell [6]. We demonstrate that, in 1D, regularized BIT corrected PIC substantially
reduces numerical heating, even when∆x≫ λD. Because of the negative impact regularization has
on the solution field near boundaries, we have developed localizations of the regularization based
on Taylor expanding the 1D non-regularized greens functionbout the regularized kernel and have
further proven that these are convergent expansions. This provides a possible adaptive approach
for dealing with regularized kernels near fixed non-periodic boundaries. Further, we expect that
∆x≫ λD should increase the efficiency of large scale PIC calculations, enhancing the capability
of legacy PIC codes by adding both fidelity (less numerical heating) and efficiency (allowing more
flexibility in meshing at a given level of fidelity). For a wideclass of electromagnetic problems,
where PIC is used, this electrostatic work is beneficial, since for stability, the mesh spacing is suf-
ficiently small that the system looks electrostatic. In collaboration with AFRL/RDHE, the PI is
working on incorporating this into ICEPIC. Below we review the analysis of 1D BIT. The analysis
has just recently been extend to the 2D and 3D case.

1D BI-PIC - RegularizationNear cell boundaries, the solution of regularized BIT diverges from
the true solution. To understand this error, we Taylor expand the non-regularized free space Green’s
function about the regularized one. We establish that this expansion is rigorously convergent as
the number of terms goes to infinity and used this result to formally establish error bounds at a cell
boundary. In addition, this expansion has a compact form in 1D and gives a way of localizing the
regularization. The convergent Taylor expansion ofG0

1D = 1
2

√

(x−y)2+d2−d2 about(x−y)2+

d2,

G0
1D(x|y)=̇

1
2

(

N

∑
i=0

(−1)i+1(2i−3)!!
2i i!

(

−d2)i (
(x−y)2+d2)(1−2i)/2

)

, (1)

where(−1)i+1(2i−3)!! ≡ (1)(1)(−1)(−3)(−5) . . .(7−2i)(5−2i)(3−2i), shows up as part of
the constant in theith derivative in the above Taylor expansion. Using a similar procedure for
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dG0

1D(y|x)
dx gives,

dG0
1D(x|y)
dx

=̇
1
2

(

N

∑
i=0

(−1)i(2i−1)!!
2i i!

(

−d2)i (x−y)
(

(x−y)2+d2)−(2i+1)/2

)

, (2)

where(−1)i(2i−1)!! ≡ (1)(−1)(−3) . . .(5−2i)(3−2i)(1−2i). The error bounds for the integral
equation with regularized field for a cell with endpoints atα andβ, with potential fields given at
these points, using anN term approximation forG0

1D, can be written as,

Err = 1
4
√

π
Γ(N+ 1

2)
Γ(N+2) d2(N+1) ∫

Ω ρ(y) d
dx

[

(ξ)−(2N+1)/2
]

dy+∫
Ω ρ(y) d

dxG
d
1D(x|y)dy−∑wiρ(xi)

d
dxG

d
1D(x|xi) ,

(3)

whereξ ∈ ((x−y)2,(x−y)2+d2). In equation (3), the term
[

(ξ)−(2N+1)/2
]

is strictly deceasing

on the intervalξ ∈ ((x−k)2,(x−k)2+d2) and has its maximum value and slope atξ = (x−y)2.
Hence equation (3) is bounded above by,

Err ≤ ρmax
4
√

π
Γ(N+ 1

2)
Γ(N+2) d2(N+1)

[

− 1

((x−β)2)
(2N+1)/2 +

1

((x−α)2)
(2N+1)/2

]

+

∫
Ω ρ(y) d

dxG
d
1D(x|y)dy−∑wiρ(xi)

d
dxG

d
1D(x|xi) ,

(4)

whereρmax is the maximum density in the domainΩ andα andβ are the end points of the domain
Ω. Equation (4) agrees with our the numerical results, predicting the correct upturn at the left
boundary and the correct down turn at the right boundary. Further, equation (4) demonstrates that
the more localized the regularization, the closer the defect will be localized to the boundary, i.e.,
largeN will localize the error. Figure 1 a) showsGd

1D using six terms of the equations (1) and (2). It
is clear that the additional terms cause the jump in PIC-BIT-δ to dramatically decrease. In addition,
the interior of the cell the PIC-BIT-δ and PIC-BIT-δ-ext are in very close agreement. Further, using
6 terms in the approximation ofG0

1D picks up more of the features of the exact solution given by
non-regularized BIT. Figure 1 b) shows the exact solution (blue diamonds) and PIC-BIT-δ with one
(magenta triangles), two (green circles) and three (red dots) terms in the approximation ofG0

1D. It
is important to note that the more localized the approximation to G0

1D, the smaller the time step

will need to be in the numerical simulation so as to resolve the transition indGd
1D

dx . Our work shows

that the better an approximation todGd
1D

dx , the sharper the transition that needs to be resolved. So
the tradeoff will be between efficiency and localization ofGd.

Time Implicit BIT Building on the idea of using the ‘fixed’ mesh to support a timehistory, the
PI and Dr. Ong have developed a method of lines transpose approach to wave equations. In this
case, the mesh is not a standard finite difference mesh, but rather a way of tracking the time evo-
lution of waves not in the proximity of Lagrangian test particles. The mesh points do not have to
have any uniformity to them, and could be thought of as ghost particles, which could be done with
a moving mesh.
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Figure 1: Force Vs. Location: a) PIC is the black dashed line,BIT is the green line with dots, BIT
corrected PIC withd = 0 is the open red circles, six termGd BIT corrected PIC withd = ∆x/10
is the blue diamonds and extended cell six termGd BIT corrected PIC is the magenta triangles.
b) PIC is the black dashed line, BIT is the blue diamonds, one term Gd BIT corrected PIC with
d = ∆x/10 is the magenta triangles, two termGd BIT corrected PIC withd = ∆x/10 is the green
circles, and three termGd BIT corrected PIC withd = ∆x/10 is the red dots.

Time Implicit BIT for Wave Type Equations:The key idea is to consider the transpose of the
standard method of lines methodology, i.e., we choose to discretize in time and directly solve the
resulting Helmholtz equation using an integral formulation. Observe that Maxwell’s equations can
be cast as

1
c2Ett −∇2E =−µoJt−

1
εo

∇ρ ,
1
c2Btt −∇2B= µo∇×J ,

whereρ=
∫

f dv is the charge density,J=
∫

v f dvis the current density, (εo, µo) are the permittivity
and permeability andc is the speed of light. To illustrate the implicit treecode time stepping
methodology forE andB, it suffices to consider the wave equation,utt − k2∇2u = 0 . Using a
centered difference approximation toutt and evaluating∇2u at time leveln+1 gives,

∇2un+1− 1
k2∆t2un+1 =

1
k2∆t2

(

−2un+un−1) .

The integral solution forun+1 is

un+1(x) =
∫∫

Ω

(−2un+un−1

k2∆t2

)

G(x|y)dΩy+

∮
∂Ω
(un+1∇G−G∇un+1) ·nds,

whereG(x|y), the free space Green’s function for the Helmholtz operatorL (·) = (∇2− 1
k2∆t2)(·),

is G(x|y) = γexp(−r/(k∆t))
r in R

3. Here,r = ||x− y||2 andγ is the normalization. The volumetric
and boundary integrals are approximated at the midpoints, and the resulting sums can be computed
using fast summation algorithms. For the wave equation, themethod is able to take time steps much
larger than the imposed CFL restrictions for an explicit integrator. We have applied our approach
to the wave equation in 1D, 2D and 3D with Direcltet boundary conditions. Additionally, this

5
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implicit time stepping methodology has been extended to higher order approximations in time.
Some interesting behaviors can be observed in theR

1 simulations below. In (a), the first order
scheme converges slowly to the analytic solution while in (b), the third order scheme converges
much quicker, albeit with more oscillations. A convergencestudy is shown in (c). In this example
the number of intervals used in the mid-point approximationto the volumetric integral isM = 4000.
The initial condition is set to

uo(x) = exp(−x2)

The time step used in the the implicit updates are∆t =
t f

10N with N ∈ {1,2, . . . ,5}. Here the final
time ist f = 5. For all results, the analytic solution was used to start the time marching method. In
each of the plots, blue curve is the exact solution, the greencurves are numerical solutions with
∆t ∈ { 1

10,
1
20,

1
30} and the red curves are numerical solutions with∆t = 1

50. In all the plots we see
convergence to the true solution as∆t→ 0. Observe that in all cases∆t is much larger than a cell
size. Note that while in the second and third order examples display oscillations for large∆t, the
oscillations rapidly deceases as∆t approaches zero, oscillations are not visible for∆t = 1

50.
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Fast Summation:To overcome theO(N2) issue, BIT makes use of a fast summation algorithm.
There are many variants of fast summation algorithms, in this case we are making use of the
Treecode algorithm. The idea is to approximate the long range interaction of each distant cluster
of particles as a moment expansion about the center of each cluster. Particle clusters are creates
with a hierarchal tree sorting of the particles. Fields are computed using a recursive divide and con-
quer approach, which makes use of the tree [2].The method isO(N logN), a substantial speedup
over direct summation. (Note that PIC isO(M logM) whereM is the number of mesh elements.)

In the work by Lee, Johnston, and Krasny (JCP 09), a recursionrelation is developed for kernels
of the from γexp(−cr)/r. This kernel is precisely the from of the free space Green’s function
that arises in the 3D time implicit formulation Maxwell’s equations. The recursion relation is a
simple modification of the recursion relation used in electrostatic BIT and are in the processes of
modifying our 3D c++ electrostatic BIT code so that we will beable to quickly develop a 3D time
implicit Maxwell solver. An essential step is to consider the development of non-oscillatory time
stepping methods which are higher than first order in time forthe time implicit Maxwell solver.

High order AMR based on finite difference WENO As a side project, we have been working
seedily to develop a high order strategy for Adaptive Meth Refinement based on Weighted Essen-
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tially Non-Oscillatory finite difference methods. The new method is the first which is 3rd order in
time and 5th order in space. The key ideas that have been introduced which differ from standard
AMR are that the method: 1) treat refinement patches that abutone another as a singe refinement
region sounded by a single ghost cell zone, 2) uses ghost cells strictly to provide boundary data to
the refinement region, 3) uses Hermite interpolation to construct third order in time ghost cell data
for intermediate time levels which arise in order to satisfythe CFL of the fine mesh in the refine-
ment region, 4) uses WENO interpolation in space to provide an initial a 5th order approximation
to the course soliton on the fine mesh and to update the ghost cell regions, 5) uses the WENO indi-
cator to disced were to refine, 6) the method use a 3rd order TVDRK method to do time integration.

We have show that the method is indeed 5th order in space and 3rd order in time for smooth prob-
lems. Further, we have shown 5rd order AMR is far less diffusive than low order AMR, requiring
less refinement because it is less diffusive, for a range of test problems. This include the 1D dam
break problem, the 1D blast wave problem, and the 2D double Macoh refection problem. In all
cases, the method give superior results, coasting less computational effort for a given accuracy than
the low order AMR method.

We are working to extend these ideas to a constrained transport solver for MHD and to extend
these ideas to a high order Vlasov solver.
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Transitions
AFRL/RDHE is collaborating with the PI on transiting BIT corrected PIC into AFRL-ICEPIC.
AFRL/RDHE is collaborating with the PI on developing BIT/Gridless DSMC AFRL-CODE.
New Discoveries
Regularization at interfaces in BIT - characterized and an adaptive strategy proposed. (PI, Cartwright)
High order explicit IDC have been analyzed in terms of RK methods. (PI, Ong, Qiu)
High order explicit IDC is competitive with RK of same order (PI, Ong, Qiu)
Explicit IDC cast in parallel from ideal for multi-core technology (PI, Mac Donald, Ong)
High order semi-implicit IDC analyzed, competitive with SIRK. (PI, Morton, Ong, Qiu)
Developed implicit time stepping for wave equations with fast summation BIT framework. (PI, Ong)

8


